Abstract

The University of Miami has a plethora of advanced digital fabrication labs colloquially known as Makerspaces. These labs feature specialized machines such as 3D Printers, CNC Machines, Laser Cutters and Programmable Robots. Unfortunately, the majority of makerspaces in UM’s ecosystem operate in isolation from one another, with varying degrees of transparency, accessibility, and restrictions.

Introduction

Our project had three goals:
1. Document and Analyze the Capabilities and Processes at existing makerspaces
2. Survey Student & Faculty opinion
3. Relay this information to relevant bodies

Methods | Design | Analysis

Results

<table>
<thead>
<tr>
<th>Chart Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviews</td>
<td></td>
</tr>
<tr>
<td>Surveys</td>
<td></td>
</tr>
<tr>
<td>Utilization Metrics</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

The College of Engineering and the University as a whole must take steps to increase student involvement in their makerspaces via:
- Incorporating Makerspaces into its Coursework
- Making relevant skills a consistent part of curriculum
- Supplying sufficient funding to Makerspaces
- Advertising these spaces effectively to Students

Acknowledgments

Dr. Buitrago, Dr. Tomonto, Elie Merheb, Vanessa Rodriguez, Maxwell Jarosz, Nathaniel Furman
College of Engineering, School of Architecture, Richter Library, Johnson & Johnson

References

https://www.arc.miami.edu/resources/labs-and-centers/model-shop/index.html