Resuscitation Mouthpiece: An Improved Design to Improve Patient Recovery

Members: Seth Landry, Jorge Bohorquez, PhD., Fabrice Manns, PhD.

Department of Biomedical Engineering

Abstract

Modern CPR mask designs have the potential to leak air when improperly applied to a patient’s face. The Resuscitation Mouthpiece is meant to circumvent these issues by utilizing a minimalist design that uses the internal moisture present within the oral cavity to form an airtight seal. The Resuscitation Mouthpiece is meant to apply to a patient’s face. The Resuscitation Mouthpiece (right) distributes oxygen through the nasal and oral cavities. It uses an inflated cushion to produce an airtight seal. The Resuscitation Mouthpiece (right) distributes oxygen through the oral cavity and uses internal moisture in order to form this seal.

Methods:

- Testing results were analyzed using the mean volume exchange and successful ventilation measurement frequency of the Resuscitation Mouthpiece compared to the CPR mask.
- Efficacy of ventilation can be analyzed on human simulation mannequins and commercially compared to available devices.
- Trained simulation technicians handle the device to replicate standard procedure for operation in the field or bedside settings.

Device Design Highlights:

- Red Arrow: Bite Guards – Increase contact area with mouth to improve friction and maintain device positioning.
- Green Arrow: Inner Seal – Utilizes moisture in mouth to form an airtight seal.
- Orange Arrow: Outer Seal – Protects user from possible bodily fluids and maintains pressure of the lips onto inner seal.

Results

<table>
<thead>
<tr>
<th>Mask Type</th>
<th>Mean Ventilation Rate</th>
<th>SD Ventilation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Mask</td>
<td>139.59 mL</td>
<td>307.83 mL</td>
</tr>
<tr>
<td>In-mouth Prototype</td>
<td>83.15 mL</td>
<td>388.1 mL</td>
</tr>
</tbody>
</table>

Figure 2: Comparison of inspiration volumes for face mask and mouthpiece. Zeros are failed ventilations and are used to indicate successful ventilation frequency only and kept apart from the average tidal volume.

Conclusion

Resurgence was developed to create a better solution to the CPR mask by decreasing the air leakage issue on some individuals and increasing the number of successful attempts at resuscitation. The new mouthpiece is a 3D printable Tango Black material mouthpiece that is intended to be connected to a standard BV device then inserted into a patient’s mouth. This allows the administration of rescue breaths and subsequent resuscitation of the patient. According to preliminary testing, the new mask shows promise at increasing successful ventilation and achieving greater volume exchange when compared to the standard CPR mask. Future renditions of the mouthpiece can be designed to include a nose plug in a single “kit.” Furthermore, we aim to use the Taguchi method to optimize the inner and outer shield’s curvature and thickness to be both more effective and cost-efficient. With these upgrades, the mask will be a product that can be used in various professions such as emergency first responders, lifeguards, and hospital staff.

Acknowledgments

We would like to thank Dr. Fabrice Manns, Dr. Jorge Bohorquez, and Dr. Julian Lippmann for their advisory on developing our project. We would also like to thank Dr. Susana Barroso-Fernandez for providing testing equipment and staff at the School of Nursing and Health Studies. Lastly, thank you to the University of Miami for providing the resources necessary to pursue our project.

References