METHODS

All six subjects in this study were selected from an outpatient clinic and had pure-tone air and bone conduction thresholds better than 20 dB HL at all frequencies (250-8000 Hz). The mean values were calculated only if the results were not significantly different from the normal values.

RESULTS

Complete results from our study (52) showing all CLAD rates (75-95 Hz) and mean conventional ABR and CAP data at high stirate rates up to 800 Hz. With proper alternating stimulation, each recording can be processed and analyzed using innovative techniques. ABR has been confirmed to be a very sensitive and cost-effective method of detecting cochlear diseases. However, several limitations of ABR need to be considered in this research. ABR has not been shown to be a reliable and accurate technique for detecting cochlear diseases.

CONCLUSIONS

CLAD provides a reliable and accurate method for analyzing ECochG and ABR data at high stimulation rates up to 800 Hz. With proper alternating stimulation, each recording can be processed and analyzed using innovative techniques. ABR has been confirmed to be a very sensitive and cost-effective method of detecting cochlear diseases. However, several limitations of ABR need to be considered in this research. ABR has not been shown to be a reliable and accurate technique for detecting cochlear diseases.

REFERENCES


