The College Administration has resumed full operations as of Sept. 20. Classes resume on Sept. 25. For complete schedules and additional information, please click here.

Miroslav Kubat

Photo of Miroslav Kubat

Miroslav Kubat

Associate Professor | College of Engineering | Electrical & Computer Engineering Department
Work Phone: (305) 284-3264



    • Brno Technical University, Czech Republic, Ph.D. in Equivalent to German Habilitation. (1995)
    • Technical University of Brno, Ph.D. in Electrical and Computer Engineering. (1990)
    • Technical University of Brno, M.S. in Engineering and Technology. (1982)


    • University of Miami, Associate Professor. Electrical and Computer Engineering (2001 - Present)
    • SABBATICAL: University of Ulm, Mendel University of Brno, . (2012)
    • University of Ulm, Germany, Visiting Professor. (2009)
    • University of Ulm, Germany, Visiting Professor. (2004)
    • University of Louisiana at Lafayette, Associate Professor. (1998 - 2001)
    • University of Ulm, Germany, Visiting Professor. (2000)
    • University of Ottawa, California, Senior Research Fellow. (1995 - 1997)
    • University of Ulm, Germany, Visiting Professor. (1995 - 1996)
    • Johannes Kepler University in Linz, Austria, Senior Research Fellow. (1994 - 1995)
    • Technical University in Graz, Austria, Lecturer and Research Fellow. (1992 - 1994)
    • Technical University of Brno, Czech Republic, Scientist. (1988 - 1992)


  • Juried or Refereed Journal Articles or Exhibitions

    • Nabizadeh, N., Kubat, M. (2017).Automated Tumor Segmentation in Single-Spectral MRI Using a Texture-Based and Contour-Based Algorithm. Expert Systems with Applications, 77, 1-10.
    • Martinez, O., Ranga, D., Kamal, P., Miroslav, K., James, E., Kubat, M. (2017).LFDA model for the assessment of water quality through Microtox using Excitation-Emission Matrices. Intelligent Data Analysis, 21, 181-203.
    • Nabizadeh, N., Kubat, M. (2015).Brain-tumors detection and segmentation in MR images: Gabor-Wavelets vs. Statistical Features. Computers and Electrical Engineering, 45, 286-301.
    • Alali, A., Kubat, M. (2015).PruDent: A Pruned and Confident Stacking Approach for Multi-label Classification. IEEE Transations on Data and Knowledge Engineering (accepted), 27, 2480-2493.
    • Martinez, O., Dababera, R., Premaratne, K., Kubat, M. (2015).LDA-Based Probabilistic Graphical Model for Excitation-Emission Matrices. Intelligent Data Analysis, 19, 1109-1130.
    • Vateekul, P., Kubat, M., Sarinnapakorn, K. (2014).Hierarchical Multi-Label Classification with SVMs: A Case Study in Gene Function Prediction. Intelligent Data Analysis, 18, 717-738.
    • Alsharif, H. H., Alhalabi, W. S., Kubat, M. (2014).Induction from Multi-Label Examples. Life Sciences, 11, 495--511.
    • Vateekul, P., Dendamrongvit, S., Kubat, M. (2013).Improving SVM Performance in Multi-Label Domains: Threshold Adjustment.. International Journal on Artificial Intelligence Tools, IJAIT, 22, [20 pages].
    • Wickramarathne, T., Premaratne, K., Kubat, M., Jayaweera, D. (2011).CoFiDS: A Belief Theoretic Approach for Automated Collaborative Filtering. IEEE Transactions on Knowledge and Data Engineering, 23, no. 2, 175-189.
    • Dendamrongvit, S., Kubat, M. (2011).Irrelevant Attributes and Imbalanced Classes in Multi-label Text-Categorization Domains. Intelligent Data Analysis, 15, 843-860.
    • Quirino, T., Kubat, M., Bryan, N. (2010).Instinct-Based Mating in Genetic Algorithms Applied to the Tuning of 1-NN Classifiers. IEEE Transactions on Knowledge and Data Engineering, 22, no.12, 1724-1737.
    • Wickramaratna, K., Kubat, M., Premaratne, K. (2009).Predicting Missing Items in Shopping Carts. IEEE Transactions on Data and Knowledge Engineering, 21, no.7, 985-998.
    • Wickramaratna, K., Kubat, M., Minnett, P. (2008).A Case Study on Numeric Law Discovery: CO_2 Fugacity in Sea Water. Intelligent Data Analysis, IOS Press, 12, no.4, 379-392.
    • Holland, H., Kubat, M., Zizka, J. (2008).Handling Ambiguous Attribute Values and Class Labels in Instance-Based Classifiers. International Journal on Artifical Intelligence Tools, 17, no.3, 449-469.
    • Sarinnapakorn, K., Kubat, M. (2008).Induction from Multilabel Examples in Information Retrieval Systems: A Case Study. Applied Artificial Intelligence, 22, no.3, 407-432.
    • Alhalabi, W., Kubat, M., Tapia, M. (2007).A Tool to Personalize the Ranking of the Documents Returned by an Internet Search Engine. Journal of Convergence Information Technology, vol. 2, no.3, 10-Jun.
    • Alhalabi, W., Kubat, M., Tapia, M. (2007).A Tool to Personalize the Ranking of the Documents Returned by an Internet Search Engine. Journal of Convergence Information Technology, 2, no.3, 10-Jun.
    • Sarinnapakorn, K., Kubat, M. (2007).Combining Subclassifiers in Text Classification: A DST-Based Solution and a Case Study. IEEE Transactions on Data and Knowledge Engineering, 19, no.12, 1638-1651.
    • Alhalabi, W., Kubat, M., Tapia, M. (2007).Search Engine Ranking Efficiency Evaluation Tool. SIGCSE Inroads Bulletin, ACM, 39, no.2, 97-102.
    • Yu, L., Kubat, M. (2006).Searching for High-Support Itemsets in Itemset Trees. Intelligent Data Analysis, 10, no.2, 105-120.
    • Rozsypal, A., Kubat, M. (2005).Association Mining in Time-Varying Domains. Intelligent Data Analysis, 9, no.3, 273-288.
    • Kubat, M., Hafez, A., Raghavan, V. V., Lekkala, J., Chen, W. K. (2003).Itemset Trees for Targeted Association Querying. IEEE Transactions on Data and Knowledge Engineering, 15, no.6, 1522-1534.
    • Rozsypal, A., Kubat, M. (2003).Selecting Representative Examples and Attributes by a Genetic Algorithm. Intelligent Data Analysis, 7, no.4, 291-304.
    • Kubat, M., Cooperson, Jr., M. (2001).A Reduction Technique for Nearest-Neighbor Classification: Small Groups of Examples. Intelligent Data Analysis, 5, no.6, 463-476.
    • Kubat, M. (2000).Designing Neural Network Architectures for Pattern Recognition. The Knowledge Engineering Review, 15, no.2, 151-170.
    • Kubat, M. (2000).Recycling Decision Trees in Numeric Domains. Informatica: An International Journal of Computing and Informatics, 24, no.2, 195-204.
    • Kubat, M., Furnkranz, J. (1999).Report on the Machine-Learning in Game-Playing Workshop. Journal of the International Computer Chess Association, ICCA, 22, no.3, 178-179.
    • Kubat, M. (1998).Decision Trees Can Initialize Radial-Basis-Function Networks. IEEE Transactions on Neural Networks, 9, no.5, 813-821.
    • Kubat, M., Holte, R., Matwin, S. (1998).Detection of Oil-Spills in Radar Images of Sea Surface. Machine Learning, 30, 195-215.
    • Widmer, G., Kubat, M. (1996).Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning, 23, no.1, 69-101.
    • Parsons, S., Kubat, M., Dohnal, M. (1995).A Rough Set Approach to Reasoning under Uncertainty. Journal of Experimental and Theoretical Artificial Intelligence, 7, no.2, 175-193.
    • Ivanova (Koprinska), I., Kubat, M. (1995).Initialization of Neural Networks by Means of Decision Trees. Knowledge-Based Systems, 8, no.6, 333-344.
    • Kubat, M., Flotzinger, D. (1995).Tree-like Structures of Linear Threshold Units for the Classification of Numeric Examples. Cybernetics and Systems, 26, no.5, 521-533.
    • Parsons, S., Kubat, M. (1994).A First Order Logic for Reasoning under Uncertainty Using Rough Sets. Journal of Intelligent Manufacturing, 5, no.4, 211-223.
    • Kubat, M., Pfurtscheller, G., Flotzinger, D. (1994).AI-Based Approach to Automatic Sleep Classification. Biological Cybernetics, 70, no.5, 443-448.
    • Kubat, M., Parsons, S. (1994).Approximating Knowledge in a Multi-Agent System. Informatica: An International Journal of Computing and Informatics, 18, no.2, 115-129.
    • Spacek, L., Kubat, M., Flotzinger, D. (1994).Face Recognition through Learned Boundary Characteristics. Applied Artificial Intelligence, 8, no.1, 149-164.
    • Kubat, M. (1993).Flexible Concept Learning in Real-Time Systems. Journal of Intelligent and Robotic Systems, 8, no.2, 155-171.
    • Kubat, M., Flotzinger, D., Pfurtscheller, G. (1993).Towards Automated Sleep Classification in Infants Using Symbolic and Subsymbolic Approaches. Biomedizinische Technik/ Biomedical Engineering, 38, no.4, 73-80.
    • Kubat, M. (1992).A Machine Learning Based Approach to Load Balancing in Computer Networks. Cybernetics and Systems, 23, no.3-4, 389-400.
    • Krizakova, I., Kubat, M. (1992).FAVORIT: Dynamic Approach to Concept Formation. Pattern Recognition Letters, 13, no.1, 19-25.
    • Kubat, M., Krizakova, I. (1992).Forgetting and Ageing of Knowledge in Concept Formation. Applied Artificial Intelligence, 6, no.2, 195-206.
    • Kubat, M. (1991).Conceptual Inductive Learning: The Case of Unreliable Teachers. Artificial Intelligence, 52, no.2, 169-182.
    • Kubat, M. (1989).Floating Approximation in Time-Varying Knowledge Bases. Pattern Recognition Letters, 10, no.4, 223-227.
  • Refereed Books

    • Kubat, M. (Ed.) Introduction to Machine Learning. Springer Publishers.
    • Halabi, W., Kubat, M. , Tapia, M. (Eds.) Induction-Based Approach to Personalized Search Engines. VDM Verlag.
    • Fuhrnkranz, J., Kubat, M. (Eds.) Machines that Learn to Play Games. NOVA Science Publishers.
    • Michalski, R. S., Bratko, I., Kubat, M. (Eds.) Machine Learning and Data Mining: Methods and Applications. Wiley.

    Book Chapters

    • Kubat, M., Sarinnapakorn, K., Dendamrongvit, S., (2010). Induction in Multi-Label Text Classification Domains. Advances in Machine Learning II (pp. 225-244). Springer Berlin / Heidelberg.
    • Subasingha, S. P., Zhang, J., Premaratne, K., Shyu, M., Kubat, M., Hewawasam, K., (2008). Using Association Rules for Classification from Databases Having Class Label Ambiguities: A Belief Theoretic Method. Data Mining: Foundations and Practice (pp. 539-562). Springer Berlin / Heidelberg.
    • Kubat, M., (2001). A Hyperrectangle-Based Method that Create RBF Networks. Radial-Basis Function Neural Network Design and Applications (pp. 31-50). Springer Verlag.
    • Kubat, M., (2001). Should Machines Learn How to Play Games?. Machines That Learn to Play Games (pp. 10-Jan). NOVA Science Publishers.
    • Kubat, M., Bratko, I., Michalski, R. S. (1998). A Review of Machine Learning Methods. Machine Learning and Data Mining: Methods and Applications (pp. Mar-69). Michalski, R.S., Kubat, M., and Bratko, I. (eds.), John Wiley & Sons.
    • Kubat, M., Koprinska, I., Pfurtscheller, G., (1998). Learning to Classify Biological Signals. Machine Learning and Data Mining: Methods and Applications (pp. 409-428). John Wiley & Sons.
    • Kubat, M., (1992). Introduction to Machine Learning. Advanced Topics in Artificial Intelligence (pp. 104-138). Springer Verlag, Lecture Notes in Computer Science 617, Berlin.